Product Rule of Differentiation

According to the product rule of derivatives, if the function $f(x)$ is the product of two functions $\mathrm{u}(\mathrm{x})$ and $\mathrm{v}(\mathrm{x})$, then the derivative of the function is given by:

If $f(x)=u(x) \times v(x)$, then:

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}) \times \mathrm{v}(\mathrm{x})+\mathrm{u}(\mathrm{x}) \times \\
& \mathrm{v}^{\prime}(\mathrm{x})
\end{aligned}
$$

Example: Find the derivative of $\mathbf{x}^{2}(\mathbf{x}+3)$.
Solution: As per the product rule of derivative, we know;
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{u}^{\prime}(\mathrm{x}) \times \mathrm{v}(\mathrm{x})+\mathrm{u}(\mathrm{x}) \times \mathrm{v}^{\prime}(\mathrm{x})$
Here,
$u(x)=x^{2}$ and $v(x)=x+3$
Therefore, on differentiating the given function, we get;
$f^{\prime}(x)=d / d x\left[x^{2}(x+3)\right]$
$f^{\prime}(x)=d / d x\left(x^{2}\right)(x+3)+x^{2} d / d x(x+3)$
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}(\mathrm{x}+3)+\mathrm{x}^{2}(1)$
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}^{2}+6 \mathrm{x}+\mathrm{x}^{2}$
$f^{\prime}(x)=3 x^{2}+6 x$
$\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}(\mathrm{x}+2)$

Quotient Rule of Differentiation
If $f(x)$ is a function, which is equal to ratio of two functions $u(x)$ and $\mathrm{v}(\mathrm{x})$ such that;
$\mathrm{f}(\mathrm{x})=\mathrm{u}(\mathrm{x}) / \mathrm{v}(\mathrm{x})$
Then, as per the quotient rule, the derivative of $f(x)$ is given by;

$$
\mathbf{f}^{\prime}(\mathbf{x})=\frac{\mathbf{u}^{\prime}(\mathbf{x}) \times \mathbf{v}(\mathbf{x})-\mathbf{u}(\mathbf{x}) \times \mathbf{v}^{\prime}(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^{2}}
$$

Example: Differentiate $f(x)=(x+2)^{3 /} /{ }_{\mathbf{x}}$

Solution: Given,
$f(x)=(x+2)^{3} / \sqrt{x}$
$=(x+2)\left(x^{2}+4 x+4\right) / \sqrt{x}$
$=\left[x^{3}+6 x^{2}+12 x+8\right] / x^{1 / 2}$
$=x^{-1 / 2}\left(x^{3}+6 x^{2}+12 x+8\right)$
$=x^{5 / 2}+6 x^{3 / 2}+12 x^{1 / 2}+8 x^{-1 / 2}$
Now, differentiating the given equation, we get;
$\mathrm{f}^{\prime}(\mathrm{x})=5 / 2 \mathrm{x}^{3 / 2}+6\left(3 / 2 \mathrm{x}^{1 / 2}\right)+12\left(1 / 2 \mathrm{x}^{-1 / 2}\right)+8\left(-1 / 2 \mathrm{x}^{-3 / 2}\right)$
$=5 / 2 \mathrm{x}^{3 / 2}+9 \mathrm{x}^{1 / 2}+6 \mathrm{x}^{-1 / 2}-4 \mathrm{x}^{-3 / 2}$

Chain Rule of Differentiation

If a function $y=f(x)=g(u)$ and if $u=h(x)$, then the chain rule for differentiation is defined as;

$$
d y / d x=(d y / d u) \times(d u / d x)
$$

This rule is majorly used in the method of substitution where we can perform differentiation of composite functions.

Let's have a look at the examples given below for better understanding of the chain rule differentiation of functions.

